OPEN DEVELOPMENT & EDUCATION

= MENU

HOW TO BUILD AN 10T DEVICE WITH LOW-POWER SLEEP

Posted on 27th November 2023 by Evette Ferrao in blog

Reading Time: 10 minutes
Recommended citation: HaRler, B. (2023). How to build an loT device with low-power sleep. Open
Development & Education. https://doi.org/10.53832/opendeved.1011

At OpenDevEd, we're committed to sharing our learning with the wider development community.
This article is one such attempt. Learnings are often very focused insights, and are necessaril
very specific. However, rather than trying to second guess what you, dear reader, may or may

Privacy - Terms



find interesting, we share such posts nonetheless. If a post is too specific for your liking, you’ll no
doubt move on to another one. It has taken the authors of this blog several hours to reach the
insights here, and we feel it’s worth sharing. So, if you're interested in microcontrollers and low-
power sleep, read on.

Recent programme work at OpenDeVEd has led us to focus on power considerations for ‘Internet
of Things’ (IoT) devices used in the context of environmental research in East Africa, such as the
Improving Learning Through Classroom Experience programme.

By low power, we mean devices that can operate continuously for long periods of time on battery
power.

That initself is perhaps not a difficult thing to do. However, we have the additional requirement
for devices that can be produced, installed, and maintained at low cost, particularly in the context
of low- and middle-income countries.

A good example of what we want is a television remote control: a device that is activated when
something needs doing (i.e., when buttons are pressed to change a programme), but that
otherwise ‘sleeps’, so that its batteries will last for several years. Our strategy is to build a device
that allows for data monitoring and measurement (and potentially transmission) at particular
times, not continuously. Typically, a measurement would only take 5-10 seconds, and
measurements would be taken, for example, every 15 minutes. Between measurements, the
device needs to enter a low-power ‘deep sleep’, consuming as little battery as possible. The idea of
‘deep sleep’ is that the power is minimised, but still allows the device to wake up later.

This article focuses on the importance of low-power sleep. Future articles will examine other
aspects.

CONTEXT

OpenDevEd is part of a team of researchers implementing the Improving Learning Through
Classroom Experience programme in Tanzania, funded by the UK Foreign, Commonwealth and
Development Office. Our work focuses on practical approaches to improving students’ learning
experience through cost-effective and sustainable infrastructural development. In particular, we
explore options for creating better classroom environments. We consider ‘indoor environmental
quality’, with a particular focus on managing temperature, light, and sound.

Effectively monitoring factors pertinent to classroom environmental quality - such as
temperature - could be done in-person, perhaps using a hand-held device; alternatively,



autonomous sensors could be used. However, the availability of suitable sensors be a challenge:
factors such as cost, ease of use, and power can limit the utility of sensor equipment.

In particular, it is important to ensure that the sensors have an effective deep sleep mode, saving
battery while ensuring that timestamps on collected data are preserved to understand
fluctuations in temperature over daily, seasonal, and annual cycles. Therefore, we have been
experimenting with different low-cost, low-power devices for accurate and sustainable use within
the context of the Improving Learning Through Classroom Experience programme.

DATA COLLECTION

As noted above, we're looking to develop a device that would take short measurements (for a
duration of 5-10 seconds), and then go to sleep. This process is sometimes called ‘strobing’: just
like a strobe light, there’s a flash (the measurement), then ‘darkness’ for a period of time, i.e., ‘low-
power deep sleep.

The following figure illustrates this process, by plotting the power consumption of a Raspberry Pi
Pico in a setup that we will discuss below. In the graph, you can see that the Pico is active for a
short period, consuming around 25 mA (milliamps). The consumption then drops to less than 5 mA
during ‘sleep.

https://github.com/bablokb/pico-sleepcurrent

Current (mode: deep-sleep with PinAlarm)

B P Y R S Y N

15

mé

10

D el s} & O 5 O %
0 I el Sy Gl o M) el
& & & o o ak gk v
time (sec)

Figure 1. Power usage for a basic Raspberry Pi Pico device with an alarm function produced by GitHub user bablokb

DEVICE OPTIONS



With a vast increase in low-cost, ‘do-it-yourself’ computing devices, there are several different
options that could be used as the basis of a low-power device.

It is important to realise that power consumption during sleep varies greatly depending on the
facilities of the microcontroller used. There are various types of ‘sleep’ that are ‘induced’ in
different ways. Broadly speaking, there are two strategies:

1. One strategy is to use the microcontrollers’ own provision for sleeping (‘internal sleep’);
that is, the microcontroller unit at the heart of the device has a way of sleeping and waking
up again.

However, this typically doesn’t save much power.

2. Another strategy is to use an external ‘clock’ which wakes up the microcontrollers; for this,
the microcontrollers can be programmed to wait for an external input to wake it up (via a
physical pin connection).

Let’s consider some devices.

RASPBERRY Pl PICO

The Raspberry Pi Pico is a widely used low-power device, centred on a modular, open design
circuit board (which, as of late 2022, has begun production in Kenya). The board uses around 50
mA during normal operation. It has internal sleep modes. Adafruit’s Dan Halbert notes that “when
avoiding TimeAlarms, the Raspberry Pi Pico devboard can achieve under 2mA (1.4mA) while in
deep sleep”, but that “when a Timealarm is added, the draw raises up to 7mA”.

We'll now do a calculation that we'll repeat several times below, which puts this consumption into
context. A standard alkaline AA battery has a capacity of around 2,700 mAh, which, at a
consumption of 7mA, would last for about 16 days (2,700 mAh /7 mA /24 hours = 16 days).
Clearly, this is not particularly long for an unattended device intended to provide continuous data,
such as measuring temperature at planned intervals during both daily and weekly cycles.

THE ADAFRUIT PICOWBELL ADALOGGER

Building on the modularity of the Raspberry Pi ecosystem, Adafruit’s PiCowbell Adalogger is an
add-on piece of hardware incorporating a real-time clock. This allows the power source for the
Pico itself to be changed without losing accurate timestamps on collected sensor data. However,
the PiCowbell board uses the ‘EN (3V3_EN)’ pin:



EN (3V3_EN) - This connects to the enable pin on the Raspberry Pi Pico, and is pulled high (to
VSYS) via a 100kQ) resistor.

This means that the power consumption is not very different from the Pico’s power consumption
(https://forums.adafruit.com/viewtopic.php?t=201034,
https://forums.adafruit.com/viewtopic.php?p=970723#p970723,
https://learn.adafruit.com/adafruit-picowbell-adalogger-for-pico). In other words, while the
Picobell adds an ‘external clock’, there isn't much gain in power consumption over what the Pico
already offers.

However, the PiCowbell does also provide an SD card slot, addressing the Pico’s problem of
limited available data storage space: with the MicroPython programming system installed, only
848 kB of space remains for programmes and data. (Note that the SD card is supported in the
firmware image provided on the CircuitPython website. In MicroPython, this will require an
alternative code.)

ESPRESSIF ESP32

Although modular and inexpensive, the Raspberry Pi Pico does seem to be inefficient when it
comes to sleep, particularly when compared to lower power microcontrollers, such as the
Espressif Systems ESP32 microcontroller. In standby mode, the ESP32 consumes only 0.25 mA, or
250 pA (microamps). With a consumption of 0.25 mA, an alkaline battery would last for 10,800
hours, or well over a year (2,700 mAh /0.25 mA / 24 hours = 450 days).

With standby power consumption that low, the device becomes suitable for our application.
However, while the Espressif ESP32 chip is very widely used in industrial low-power applications,
the ecosystem felt too specialised for our purposes. By contrast, the Raspberry Pi Pico ecosystem
is very maker-friendly. This is important because we want to keep development costs to a
minimum. Therefore, we decided to find a solution using the Raspberry Pi platform.

Moreover, as we'll see below, it can lower the stand-by power consumption even further than
what the ESP32 offers.

CIRCUITS FOR LOW-POWER SLEEP

Clearly, the crux of extending battery life in a low-power device, used for strobe-type
measurements, centres on the efficiency of its sleep cycle. So, how can we reduce power
consumption during sleep? The Raspberry Pi Pico cannot run much below a current of 2 mA onits
own internal sleep functions. However, the Pico is a simple device, which can turn on and off



quickly; therefore, one solution is to simply turn off the Pico when not in use. That is to say, rather
than relying on the Pico’s own sleep function, can we design a circuit that would turn the Pico off
when it’s not needed?

Pimoroni offers some devices that support low-power operation. Our tests of Pimoroni’s Enviro
Indoor (Pico W Aboard) (a Pico-based environmental monitoring board) and the Badger 2040
display system showed currents of around 30 pA. That consumption is over 46 times lower than
the standard Pico system, and 8 times lower than the ESP32. This low-power consumption is
achieved by cutting power to the Pico altogether, using an external circuit. The circuit uses a real-
time clock circuit that can wake the Pico up as needed.

3V3 LDO / "always on" supply / VSYS EN 5 [g

Provides the "always on" V+ rail (hetween 1.8V and 3.3V) needed by the system when in low
power (shutdown) mode. Nothing draws much power from this rail to ensure that modules are
using minimal battery power when idle.

The regulator is supplied by VSYS when VBUS is present, or directly

from VBAT otherwise. Using the built in 3V3_EN signal on the Pico draws too
much power in sleep mode so we have our own cut off
for VSYS which can completely disconnect the Pico

UBUS UBAT UsyYs
N\ N
Q3 ff
Q2 @
— J._L_J. DMG2381L
tg U+_A0
DMG2301L S U1 /N R15 '
R4
i_ L 4 IN ouT 128k
120k l o | a5
s GND vy ek
~i ~ —
AP2138N-3.3TRG1 S| DMN3731U
Iq:
1uf typ<BmAd ——
38uA typ(25@mAY 1 _

Figure 2. Excerpt from the schematic of the Enviro Indoor showing the arrangement of the device’s power supply
control.

Therefore, just for standby, using an AA battery, the calculation for battery life would give about
10 years of operation (2,700 mAh / 0.03 mA (or 30 pA) / 24 hours = 3,750 days, or just over 10

years).

An example for a separate add-on, using the same principle, is here (again courtesy of GitHub user
bablokb). Compared to Figure 1, we now get a figure as shown below, where the standby current

drops much lower.



https://github.com/bablokb/pico-sleepcurrent

Current (mode: external enable-timer)

) B o R e By B B

25

20 A

10 A

D el s} & O 5 O %
0 I el Sy Gl o M) el
& & & o o ak gk v
time (sec)

Figure 3. Power usage for an alarm function on a Raspberry Pi Pico device equipped with a 3V3 pin power control,
produced by Github user bablokb

Given that the Pico turns off completely, we now need to find another way of keeping time. One
option for accurate timing would be incorporating a real-time clock (RTC), which typically has very
low-power consumption. For example, Pimoroni’s RV3028 Real-Time Clock Breakout is an ultra-
low-power RTC, boasting a supposed ~100 nA typical current draw. Using the same high-end AA
battery, with a current of 100 nA, this is equivalent to some 3,000 years (2,700 mAh / 100 nA / 24
hours / 365.25 days = over 3,213 years). In other words, the power use added by the RTC (0.1 pA)
is insignificant, compared to the remaining stand-by current of 30 pA.

RESISTOR-BASED TIMERS — NANOAMPS?

It may be possible to reduce sleep current to the nanoamp range, using alternative boards that
use resistor-based timers, such as the TTPL5110 made by Texas Instruments. Several vendors
have produced breakouts based on that chip, and state power consumption in the nanoamp range.
For example, Sparkfun says that their TPL5110 Nano Power Timer,

“Is ideal for applications that require low power, and especially those projects that are running off
of a LiPo [lithium-ion polymer rechargeable] battery. The Nano Power Timer will turn on your
project, most likely a microcontroller, after the set amount of time, continuously. When your
microcontroller has completed whatever needs doing, sampling air quality for example, it can then
signal back to the Nano Power Timer to turn it off. “

The power consumption is very low:



“While the project is off, the Nano Power Timer will only consume 35nA of power until the timer
turns the project back on again.”

However, working with these very small currents requires a lot of care, and there’s always the risk
of unwanted leakage. For example, another breakout for the TTPL5110 device is the Adafruit
TPL5110 Power Timer Breakout. However, you need to take care to cut the solder jumper to get
to the nanoamp range. We reached out to Adafruit customer support, who helpfully advised this:

“That’s why we designed the board with a solder jumper so you can cut the trace to the LED. If you
cut the traces, the current consumption drops back into the TPL5110’s nanoamp range.

Based on measurements, the TPL5110 only reaches the 35nA banner spec when the supply
voltage is 2.5V. For supply voltages up to 5V, the TPL5110 uses 80 nA to 20 nA. We usually say
‘less than 100 nA; which still comes to about 1 mAh of energy consumption per year.”

Obviously, a reduction from the standby afford by the real-time clock (30 pA) down to below 0.1
pA = 100 nA (for operating voltage around 3V) would be significant (300 times lower power
consumption). However, we would lose the ability to flexibly time our measurements. This means
that the device would have to wake up the microcontroller (say) every 15 minutes; if we needed
regular measurements, this would be feasible.

Overall, the flexibility of measurements is significant in our scenario. We may want to measure
more frequently during the day and less frequently (or not at all) during the evenings and
weekends.

For argument’s sake, consider this possible work-around: The microcontroller is woken every 15
mins, and once awake, the microcontroller decides whether to take a measurement or save power
by not taking a measurement and going straight back to sleep. Overall, turning on the
microcontroller is quite power intensive, and it is better to stick with the RTC-based approach: It
consumes more power in standby than the resistor-based approach, but gives us flexibility over
when to take measurements (which saves power).

BATTERY LIFE OF ZIGBEE SENSORS

In our project, we will also use ZigBee sensors. These typically have low battery consumption.
While some Zigbee devices use AA batteries, most of them use button cells, which have capacity
of the order of 100 mAh, and some last around two years, which would be equivalent to a current
of 11 pA. Typically, these devices also do not report time, but just send instantaneous readings via
the Zigbee protocol. While a consumption of 11 pAis not in the nanoamp range, we would not be
surprised if these devices use resister-based timing mechanisms.



REALITY CHECK

It is important to note that the above calculations are idealised. The voltage of the battery will
decrease as it discharges. At some point, the voltage will be too low to power the Pico (or other
microcontroller). That means that the full charge is not usable, and the actual duration of
operation is lower than the above calculation suggests. For the purposes of this article, we assume
that the full charge is available. We'll return to this issue in a future blog post, when we provide
actual measurements of power consumption.

For a sneak preview, see https://github.com/bablokb/pcb-pico-datalogger, where power use
measurements are available. Note that our first design had slightly higher consumption (around
80 pA) while the current design matches the Pimoroni range (around 30 pA).

CONCLUSIONS

With burgeoning maker-friendly computing, there are several options for developing ‘low-power
devices’ suitable for ‘strobe measurements’. For the purposes of our use case, our device will need
to measure environmental properties during the school day, when the school is being used by
students and staff. Preventing unnecessary powering on can reduce battery wastage. Therefore,
taking ‘strobe measurements’ during key hours can help save battery, instead of simply taking
regular measurements.

However, power consumption is just one of many considerations around implementing our device
in the context of the Improving Learning Through Classroom Experience programme. Future
technology-focused articles will describe selecting and testing sensors for an environmental
sensing project, as well as design choices for an indoor environmental quality-sensing network.

REFERENCES AND LINKS

e https://forums.adafruit.com/viewtopic.php?t=201034

e https://forums.adafruit.com/viewtopic.php?p=970723#p%970723

e https://learn.adafruit.com/deep-sleep-with-circuitpython/rp2040-sleep

e https://github.com/bablokb/pico-sleepcurrent

e https://forums.adafruit.com/viewtopic.php?t=201047

e https://forums.pimoroni.com/t/low-power-consumption-on-raspberry-pi-pico-badger-
picowbell/22086



e https://forums.pimoroni.com/t/raspberry-pi-pico-why-does-free-space-show-as-848-kb-
and-advice-on-how-to-add-an-sd-card-to-an-enviro-indoor/22038/13

CITATION

HaBler, B. (2023). How to build an loT device with low-power sleep (Improving Learning Through
Classroom Experience in East Africa). OpenDevEd. https://doi.org/10.53832/opendeved.1011

PREVIOUS POST
Benefits of using ISSB in school buildings

LEAVE A REPLY

Your email address will not be published. Required fields are marked *

Comment *

Name *

Email *



