Full Library
Importance of Feature Selection for Recurrent Neural Network Based Forecasting of Building Thermal Comfort
Resource type
Book Section
Authors/contributors
- Bouchachia, Abdelhamid (Editor)
- Macas, Martin (Author)
- Moretti, Fabio (Author)
- Lauro, Fiorella (Author)
- Pizzuti, Stefano (Author)
- Annunziato, Mauro (Author)
- Fonti, Alessandro (Author)
- Comodi, Gabriele (Author)
- Giantomassi, Andrea (Author)
Title
Importance of Feature Selection for Recurrent Neural Network Based Forecasting of Building Thermal Comfort
Abstract
The paper demonstrates the importance of feature selection for recurrent neural network applied to problem of one hour ahead forecasting of thermal comfort for office building heated by gas. Although the accuracy of the forecasting is similar for both the feed-forward and the recurrent network, the removal of features leads to accuracy reduction much earlier for the feed-forward network. The recurrent network can perform well even with less than 50% of features. This brings significant benefits in scenarios, where the neural network is used as a blackbox model of thermal comfort, which is called by an optimizer that minimizes the deviance from a target value. The reduction of input dimensionality can lead to reduction of costs related to measurement equipment, data transfer and also computational demands of optimization.
Book Title
Adaptive and Intelligent Systems
Volume
8779
Place
Cham
Publisher
Springer International Publishing
Date
2014
Pages
11-19
Language
en
ISBN
978-3-319-11297-8 978-3-319-11298-5
Accessed
13/02/2024, 19:10
Library Catalogue
DOI.org (Crossref)
Extra
Series Title: Lecture Notes in Computer Science
DOI: 10.1007/978-3-319-11298-5_2
Citation
Macas, M., Moretti, F., Lauro, F., Pizzuti, S., Annunziato, M., Fonti, A., Comodi, G., & Giantomassi, A. (2014). Importance of Feature Selection for Recurrent Neural Network Based Forecasting of Building Thermal Comfort. In A. Bouchachia (Ed.), Adaptive and Intelligent Systems (Vol. 8779, pp. 11–19). Springer International Publishing. https://doi.org/10.1007/978-3-319-11298-5_2
Link to this record