Full Library
A Dynamic Model for Indoor Temperature Prediction in Buildings
Resource type
Journal Article
Authors/contributors
- Hietaharju, Petri (Author)
- Ruusunen, Mika (Author)
- Leiviskä, Kauko (Author)
Title
A Dynamic Model for Indoor Temperature Prediction in Buildings
Abstract
A novel dynamic model for the temperature inside buildings is presented, aiming to improve energy efficiency by providing predictive information on the heat demand. To analyse the performance and generalizability of the modelling approach, real measurement data was gathered from five different types of buildings. Easily available data from various sources was utilized. The chosen model structure leads to a minimal number of input variables and free parameters. Simulations with real data from five buildings, and applying the identical model structure showed that the average modelling error during the 28-h prediction horizon was constantly below 5%. The results thus demonstrate that the model structure can be standardized and easily applied to predict the indoor temperatures of large buildings. This would finally enable demand side management and the predictive optimization of the heat demand at city level.
Publication
Energies
Volume
11
Issue
6
Pages
1477
Date
2018/6
Language
en
ISSN
1996-1073
Accessed
12/02/2024, 15:42
Library Catalogue
Call Number
openalex:W2807496108
Extra
Number: 6
Publisher: Multidisciplinary Digital Publishing Institute
openalex: W2807496108
Citation
Hietaharju, P., Ruusunen, M., & Leiviskä, K. (2018). A Dynamic Model for Indoor Temperature Prediction in Buildings. Energies, 11(6), 1477. https://doi.org/10.3390/en11061477
Theme
Link to this record