Your search
Results 129 resources
-
Aiming at the prediction control for indoor temperature time-delay in variable air volume (VAV) air conditioning system, this paper presents an indoor temperature prediction control method based on Elman neural network multi-step prediction model. Firstly, this paper introduces basic control principles of pressure-dependent and pressure-independent VAV terminal through comparable analysis and points out significance of indoor temperature prediction control based on pressure-dependent VAV...
-
The heating energy demand stated in energy performance certificates (EPC) and in other instruments used in the of evaluation of building’s energy performance is usually determined assuming very specific (reference) indoor behavioral/heating patterns. Particularly, they tend to assume that households heat (nearly) the entire house to a “comfort” temperature during (nearly) all the heating season. However, several field studies have shown that there are major niches of the housing stock which...
-
Energy optimization in buildings by controlling the Heating Ventilation and Air Conditioning (HVAC) system is being researched extensively. In this paper, a model-free actor-critic Reinforcement Learning (RL) controller is designed using a variant of artificial recurrent neural networks called Long-Short-Term Memory (LSTM) networks. Optimization of thermal comfort alongside energy consumption is the goal in tuning this RL controller. The test platform, our office space, is designed using...
-
Energy optimization in buildings by controlling the Heating Ventilation and Air Conditioning (HVAC) system is being researched extensively. In this paper, a model-free actor-critic Reinforcement Learning (RL) controller is designed using a variant of artificial recurrent neural networks called Long-Short-Term Memory (LSTM) networks. Optimization of thermal comfort alongside energy consumption is the goal in tuning this RL controller. The test platform, our office space, is designed using...
-
Recent increase in green-roof installation has increased irrigation water consumption which could be wasteful using conventional watering management protocol. The knowledge gap in irrigation optimization to achieve water conservation could be filled. The complicated conventional approach uses weather and soil sensors to calculate watering needs, which is impractical and not cost-effective. This study employs artificial intelligence algorithms composed of artificial neural network and fuzzy...
-
The prediction of the air temperature (IT) and relative humidity (IH) in a building can help to reduce energy consumption for air conditioning. The purpose of this work was to apply the artificial neural network (ANNs) for an hourly prediction, 24–672h in advance of (IT) and (IH) in buildings found in hot-humid region. The inputs used in the model are 12 last values of indoor and outdoor air temperature and relative humidity. The experimental building is built with cement hallow block in...
-
Conventional chilled water based air conditioning systems use low temperature chilled water to remove both sensible load and latent load in conditioned space, and reheating devices are usually installed to warm the overcooled air, which leads to energy waste. Alternatively, this paper proposes a neural network (NN) model based predictive control strategy for simultaneous control of indoor air temperature and humidity by varying the speeds of compressor and supply air fan in a chilled water...
-
The paper proposes a hybrid numerical-neural-network model developed based on the simulation of unheated and uncooled indoor temperature and humidity for buildings. This model is initiated with a numerical simulation and the output is then passed to a neural network for calibration. This approach utilizes both numerical and neural network models and it can analyze the influences of specific parameters on building performances without sacrificing accuracy and generalizability. An experimental...
-
A predictive models were developed to determine the thermal comfort level for the academic classroom by using artificial neural networks (ANNs). The paper reports experimental and theoretical analysis on a problem of achieving a desired thermal comfort level. The proposed method focused on the classical artificial (feed forward) neural networks (ANN) and the time-series NARX feedback neural networks to achieve the thermal comfort assessed using the predicted mean vote (PMV). The field...
-
The paper describes the application of a combined neuro-fuzzy model for indoor temperature dynamic and automatic regulation. The neural module of the model, an auto-regressive neural network with external inputs (NNARX), produces indoor temperature forecasts that are used to feed a fuzzy logic control unit that simulates switching the heating, ventilation and air conditioning (HVAC) system on and off and regulating the inlet air speed. To generate an indoor temperature forecast, the NNARX...
-
The paper demonstrates the importance of feature selection for recurrent neural network applied to problem of one hour ahead forecasting of thermal comfort for office building heated by gas. Although the accuracy of the forecasting is similar for both the feed-forward and the recurrent network, the removal of features leads to accuracy reduction much earlier for the feed-forward network. The recurrent network can perform well even with less than 50% of features. This brings significant benefits...
-
This paper presents the optimization of chillers operating using artificial neural networks and genetic algorithms. For the needs of generating chiller models, an artificial neural network was used, trained with data collected from an actual chiller. For that purpose the basic characteristics of artificial neural networks are shown as well as the process of making specific chiller models used for testing the results of application of the genetic algorithm in usage optimization. The optimal...
-
This paper presents the optimization of chillers operating using artificial neural networks and genetic algorithms. For the needs of generating chiller models, an artificial neural network was used, trained with data collected from an actual chiller. For that purpose the basic characteristics of artificial neural networks are shown as well as the process of making specific chiller models used for testing the results of application of the genetic algorithm in usage optimization. The optimal...
-
The actual European energy context highlights the building sector as one of the largest sectors of energy consumption. Consequently, the “Energy Performance of Buildings Directive”, adopted in 2002 and focusing on energy use in buildings, requires all the EU members to enhance their building regulations and to introduce energy certification schemes, with the aim of both reducing energy consumption and improving energy efficiency. That is why carrying out an energy performance diagnosis is...
Explore
Theme
-
Artificial Intelligence
- ... in Sub-Saharan Africa (6)
- Machine learning (47)
- Neural network (80)
- Air pollution (2)
- Climate change (21)
- Disability (1)
- Education and climate change (3)
- Energy efficiency (12)
- Impact on learning (1)
- Indoor Environmental Quality (IEQ) (11)
- Modelling (12)
- Noise (2)
- School buildings and classrooms (1)
-
Sustainable Development Goals
(71)
- SDG02 Zero hunger (1)
- SDG03 Good health and well-being (1)
- SDG04 Quality education (1)
- SDG06 Clean water and sanitation (1)
- SDG07 Affordable and clean energy (44)
- SDG09 Industry, innovation and infrastructure (2)
- SDG11 Sustainable cities and communities (6)
- SDG13 Climate action (14)
- SDG14 Life below water (1)
- Thermal comfort and heat stress (39)