Your search
Results 9 resources
-
Recently, Occupant-Centric Control (OCC) strategies have gained mounting interest. Previous studies made use of OCC strategies for adjusting the operation of heating/cooling systems, improving indoor thermal comfort and governing mechanical ventilation systems. However, a very limited number of studies have applied OCC strategies to natural ventilation systems. Further, the feasibility of establishing OCC strategies for controlling indoor thermal comfort, energy use and specifically air...
-
The occupants' presence, activities, and behaviour can significantly impact the building's performance and energy efficiency. Currently, heating, ventilation, and airconditioning (HVAC) systems are often run based on assumed occupancy levels and fixed schedules, or manually set by occupants based on their comfort needs. However, the unpredictability and variability of occupancy patterns can lead to over/under the conditioning of space when using such approaches, affecting indoor air quality...
-
The occupants' presence, activities, and behaviour can significantly impact the building's performance and energy efficiency. Currently, heating, ventilation, and airconditioning (HVAC) systems are often run based on assumed occupancy levels and fixed schedules, or manually set by occupants based on their comfort needs. However, the unpredictability and variability of occupancy patterns can lead to over/under the conditioning of space when using such approaches, affecting indoor air quality...
-
Personal thermal comfort models are crucial for the future of human-in-the-loop HVAC control in energy-efficient buildings. Individual comfort models, compared to average population responses, can provide the personalization required for successful control. In this work, we frame the thermal preference prediction task as a multivariate, multi-class classification problem and use deep learning and time-series-based approach for thermal preference prediction. We combine l1 regularization with...
-
Building Energy prediction has emerged as an active research area due to its potential in improving energy efficiency in building energy management systems. Essentially, building energy prediction belongs to the time series forecasting or regression problem, and data-driven methods have drawn more attention recently due to their powerful ability to model complex relationships without expert knowledge. Among those methods, artificial neural networks (ANNs) have proven to be one of the most...
-
A large part of energy consumption in homes, offices and commercial spaces is related to Heating, Ventilation and Air-conditioning (HVAC) devices. The effective parameter on the consumption of HVAC systems is internal heat gains that arise from occupants, electric equipment and lighting. In order to reduce the energy consumption of these systems, internal heat gains should be predicted accurately. Since there are few investigations performed on the prediction of internal heat gains, in this...
-
This paper presents a detailed analysis to optimize natural ventilation performance in educational buildings to minimize the probability of viral infection (POI) and avoid draught discomfort. A whole building energy simulation tool has been coupled with the Wells–Riley equation to predict the probability of infection and Fanger’s draught equation to estimate the draught risk for classroom environments. Several parameters have been investigated, including window opening fraction (WOF),...