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Abstract To apply real-time predictive control using automated devices for minimizing the risk of surface 
condensation in a residential space, the authors first developed a nodal network model that simulates the flow of 
moist air and the thermal behavior of a target area with the given boundary conditions of a space. The lumped 
model was enhanced using a parameter estimation technique based on the measured temperature, humidity, and 
schedule data. However, the humidity model prediction performance was still outside the valid range. A data-
driven model was then developed using an artificial neural network (ANN) with the measured data that was 
formerly used to enhance the lumped model. Taking into consideration the possible uncertain characteristics of 
moist air, it was found that the data-driven model was a more suitable option for predicting the condensation as 
compared to the physics-based and grey-box models. With a stable range of errors between the simulation outputs 
and measured data, the ANN model could be useful for model predictive control. 

1. Introduction 
As buildings become airtight, the problem of controlling moisture has become a significant issue. 
Condensation is a typical example of bad control with respect to indoor moisture [1,2]. Residential 
buildings necessarily include wet areas such as a bathroom or a kitchen, where moisture is generated 
intermittently, thus making the adjacent spaces vulnerable to condensation. Condensation resulting from 
excessive moisture can result in poor indoor air quality, mold growth, or even structural damage [3]. As 
moisture transfer is a rapid process, and the consequent condensation phenomenon involves phase 
change [4], predictive control rather than corrective control is required to minimize the condensation 
risk [5]. Therefore, indoor moisture prediction based on simulation models should be performed prior 
to the establishment of control strategies [6,7]. 
 Two different approaches exist for the simulation model: physics-based and data-driven. The 
physics-based model, also known as the forward approach, is based on the governing equations of 
building physics and provides a high generalization performance [7]. Computational fluid dynamics and 
the nodal network model are examples for the airflow simulations [8]. However, detailed information 
regarding the target space is required but unknown parameters can exist in a complex building system 
[9]. Moreover, the data-driven model describes the dynamics of a building with a relationship between 
the input and output data [10]. Even without making the additional effort to establish an assumption or 
perform a calibration step based on expertise, this model exhibits a high accuracy. The grey-box model 
is a combination of the physics-based and data-driven models, as its structure is based on the first 
principles and the unknown parameters are obtained from the measured data [11]. 
 In this study, the authors developed prediction models comprising condensation determination 
factors using a nodal network and machine learning in model predictive control (MPC). Both these 
models predict the heat and mass change at a specific dry space in a residential building: a dressing room 
that is exposed to moisture transferred from a bathroom. It is assumed to have a lumped state in the 
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physics-based model to ensure a fast computation for real-time predictive control, and the parameter 
estimation technique was adopted with the use of measured data to improve the accuracy of this 
simplified model [13]. A machine learning model was developed using an artificial neural network 
(ANN) with the same data used for the grey-box model development. The data measurement, model 
development, and the comparison between these two different approaches are presented in the following 
section. 

2. Analysis of surface condensation with field measurement 
Surface condensation occurs when the temperature of a surface is lower than the dew point temperature 
calculated from the temperature and relative humidity. This means that there are two possible causes for 
surface condensation: excessive moisture or low surface temperature. Residential buildings thus belong 
to a high-risk group in terms of condensation as moisture is generated in their interiors [1]. To determine 
the actual occurrence patterns, the authors performed field measurements in winter. Rapid fluctuation 
was observed in the dew point temperature owing to the transferred moisture, and the requirement of a 
prediction model emerged for the complete prevention of surface condensation (Figure 1). 
 Data was collected from a testbed of apartment housing located in the Seoul metropolitan region, 
Uijeongbu City. This apartment was selected as the testbed because it has a type of floor plan that is 
significantly affected by interior moisture generation; the bathroom is in the interior zone, and the 
adjacent dressing room is facing north [2] as shown in Figure 2. The state variables were measured at 
1-min intervals with at least two points in each area to clarify the causality of the data. To simulate the 
usage of a shower-booth faucet, a solenoid valve was installed in the bathroom. Furthermore, a pre-
installed ventilation fan and bathroom door were set as control variables with actuators. Prior to the 
application of MPC, to determine the actual control effects with the change in control variables, various 
measurement scenarios were tested under different control logics. The measured parameters are listed 
in Table 1.   

Table 1. Measured item and location 
Measured variables Location Description 

State 
variables 

Temperature(℃) Dressing room x1~2 
Bathroom x3~4 
Intermediate zone x5~6 

Relative humidity(%) Dressing room x7~8 
Bathroom x9~10 
Intermediate zone x11~12 

Surface temperature(℃) North wall surface x13~17 
Openness(Open/Close) Bathroom door/bedroom door x18~19 

Dressing room window x20 
Control 
variables 

Solenoid valve state(On/Off) Bathroom shower booth x21 
Swing door operator state(On/Off) Bathroom door x22 
Ventilation fan state(On/Off) Bathroom x23 

 

 
Figure 1. How surface condensation occurs in a residential space 
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3. Surface condensation prediction model development 

3.1. Physics-based and grey-box model 
The nodal network model is based on the state space equation which explains the exchange between 
nodes. In this study, the heat balance and moisture balance equations are coupled for the calculation of 
the absolute humidity based on the temperature and relative humidity in the bathroom and dressing room. 
The basic structure of the airflow model depends on the moisture exchange between the spaces and 
infiltration from outdoor air, which is given by Equation 1. At the bathroom node, the airflow owing to 
the ventilation fan and the moisture generation were also modeled. Some terms that are considered in a 
typical calculation are ignored here, such as the moisture storage terms of walls, because vinyl 
wallpapers are used as wall finishing materials in this building, and its sorption effect is negligible. To 
speed up the computational time, the walls between spaces were set as space-averaged nodes as the 
aforementioned “lumped” states in the thermal calculation [12,13]. Consequently, the heat balance 
equation was expressed in terms of an overall heat transfer coefficient and airflow as per Equation 2 
with an average U value of the walls. The surface temperature in the corner, as a separated node from 
the whole wall construction with part thermal capacity, was then calculated using the outdoor air 
temperature, and the calculation results of the heat balance equation according to the RC network are 
presented in Figure 3. 

𝜌𝜌𝑉𝑉𝑧𝑧
𝑑𝑑𝑊𝑊𝑧𝑧
𝑑𝑑𝑑𝑑

= ∑�̇�𝑚𝑔𝑔𝑔𝑔𝑔𝑔 + ∑�̇�𝑚𝑖𝑖(𝑊𝑊𝑖𝑖 −𝑊𝑊𝑧𝑧
𝑑𝑑) + �̇�𝑚𝑖𝑖𝑔𝑔𝑖𝑖(𝑊𝑊∞ −𝑊𝑊𝑧𝑧

𝑑𝑑)  (1)  

𝜌𝜌𝑉𝑉𝑧𝑧
𝑑𝑑𝑇𝑇𝑧𝑧
𝑑𝑑𝑑𝑑

= ∑ �̇�𝑄 +∑𝑈𝑈𝑖𝑖𝐴𝐴𝑖𝑖�𝑇𝑇𝑖𝑖,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑇𝑇𝑧𝑧𝑑𝑑� + ∑�̇�𝑚𝑖𝑖𝐶𝐶𝑝𝑝(𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑧𝑧𝑑𝑑) + �̇�𝑚𝑖𝑖𝑔𝑔𝑖𝑖𝐶𝐶𝑝𝑝(𝑇𝑇∞ − 𝑇𝑇𝑧𝑧𝑑𝑑)        (2)  

To compensate the degradation in the accuracy due to simplification, the parameter estimation technique 
was applied. It was found from data analysis that the lower corner surface temperature (x15) was the 
lowest, and the corresponding measured data for the spatial air (temperature x1, x4, and x5; relative 
humidity x7, x10, and x11) were sorted to identify uncertain parameters in order to improve the accuracy 
of the models. The outdoor climate data including the temperature, relative humidity, and barometric 
pressure were acquired from the online database of the Korea Meteorological Administration.  

 

 
(a) Heat and mass transfer in spatial air 

 
(b) Corner surface thermal transmittance 

Figure 2. Floor plan of the testbed Figure 3. RC network diagram 
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The nodal network model was thus trained to minimize the mean-square error with the measured data 
as the grey-box model distinguished from the physics-based model. From the 20,000 data points 
obtained after the elimination of outliers, 15,000 points were used to train, and the other 5,000 points 
were used for the test. As a result, the performance of the model was slightly improved as shown in 
Table 2 and Figures 5 and 6. However, the relative humidity model still did not satisfy the ASHRAE 
guideline. This is because the re-evaporation effect after moisture generation and the transferred amount 
through the ventilation fan duct from neighboring apartment units could not be quantified using the 
model structure. Furthermore, not all the boundary conditions were known or measured; for example, 
exterior convective heat transfer coefficient changes consistently and temperature in pipe duct space is 
still unknown, and therefore the predicted values of the surface temperature have lost in tendency. 

3.2. Data-driven model  
Among various data-driven methods, ANN is broadly used for various purposes without being limited 
by materials. Furthermore, it exhibits a high accuracy in predicting nonlinear systems such as buildings 
and has a short computational time [6,7]. ANN learns from data in the process of minimizing errors 
between the actual data and its predicted values using back propagation technique, and as a result, finds 
the optimal weight of the neurons. The constraints can be expressed as follows, where 𝑦𝑦�𝑤𝑤, 𝑥𝑥𝑗𝑗� and  𝑑𝑑𝑗𝑗 
represent the  values predicted by the ANN and the measured data, respectively: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎(𝑤𝑤) = 1
𝑁𝑁
∑ �𝑦𝑦�𝑤𝑤, 𝑥𝑥𝑗𝑗� − 𝑑𝑑𝑗𝑗�

2𝑁𝑁
𝑗𝑗=1    (3)  

In the ANN model, the prediction time horizon and target data must be predetermined at the training 
stage. In this study, the ANN was designed to predict the temperature, relative humidity, and surface 
temperature for 5 min of the future at the target point in Figure 2, i.e., the dressing room window (x1 
and x7) and wall surface temperature (x15), using the state variables of the past 5 min including the 
states at the target point, and the future 5 min of the control variables that cause change. The time horizon 
was set as 5 min because it was the minimum control time step that could be used while considering a 
typical shower time. Data for the same period was used for the grey-box model. However, the difference 
was that the whole dataset (x1~x23) was used to train the ANN model because each data exhibited a 
strong positive correlation with at least one output variable. This is because of the good mixing of the 
airflow. 
 The structure of the model consists of two hidden layers. The number of nodes of the hidden 
layers and hyper parameters were determined using a trial-and-error method. The hyperbolic tangent 
was selected as the activation function. The predicted temperature, relative humidity, and surface 
temperature satisfied the ASHARAE guidelines (Table 2 and Figure 7). 

Table 2. Test of model performance by ASHRAE guideline 
 Temperature Humidity Surface temperature 
Physics-based CVRMSE(%) 6.13 69.63 16.53 

MBE(%) -0.02 -0.44 -0.15 
Grey-box CMRMSE(%) 3.45 52.83 14.29 

MBE(%) -0.01 -0.33 -0.13 
Data-driven CVRMSE(%) 1.98 7.12 0.98 

MBE(%) 0.02 0.01 -0.01 

4. Conclusion 
In this paper, three models were developed: (1) physics-based model, (2) grey-box model, and (3) data-
driven model. Despite the generalization performance and analytical explanation of the physics-based 
model based on the first principles, it exhibits the lowest accuracy. This is because the field measurement 
cannot be designed for an ideal situation wherein everything is under control, as in an experimental 
chamber. To determine the unknown parameters in the physics-based model, the authors used the 
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Figure 4. Structure of ANN model prediction 

 

   
(a) Temperature (°C) (b) Absolute humidity (g/kg) (c) Surface temperature(°C) 

Figure 5. Physics-based model predicted values vs. measured data 
 

   
(a) Temperature (°C) (b) Absolute humidity (g/kg) (c) Surface temperature (°C) 

Figure 6. Grey-box model predicted values vs. measured data 
 

   
(a) Temperature (°C) (b) Relative humidity (%) (c) Surface temperature (°C) 

Figure 7. ANN model predicted values vs. measured data 
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parameter estimation technique and used it as a grey-box model. Although the average prediction 
performance has been improved (CVRMSE: 30.76% → 23.52%; MBE: -0.20% → -0.16%), the absolute 
humidity still did not meet the criteria owing to uncertain factors. Using measured data that was once 
used for parameter estimation, the ANN model was then developed and was found to exhibit the highest 
accuracy in all respects. Although the largest number of input variables was used for training, it does 
not require data that is difficult to measure, such as the convective heat transfer coefficient or barometric 
pressure. Furthermore, there is no requirement for “calculating” the absolute humidity at each node 
based on the temperature and relative humidity using an additional step. Only the original data is used 
to define the relation between the input and output variables in the data-driven approach. Although the 
application of this simulation model is limited in other buildings, with respect to MPC, the data-driven 
model can be the most economic option with lighter work required for model development and a higher 
prediction performance in condensation prediction for the specific area under consideration. Based on 
this prediction model, the optimal control strategies for minimizing the surface condensation will be 
tested in a future study. 
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