Predicting indoor air temperature and thermal comfort in occupational settings using weather forecasts, indoor sensors, and artificial neural networks

Resource type
Journal Article
Authors/contributors
Title
Predicting indoor air temperature and thermal comfort in occupational settings using weather forecasts, indoor sensors, and artificial neural networks
Abstract
We present an approach to generate location-specific forecasts of indoor temperature (Ti) and thermal comfort and issue indoor heat warnings for occupational settings. Indoor forecasts are generated using standard outdoor weather forecasting products and an artificial neural network (ANN) trained on-site using local indoor measurements from a low-cost sensor system measuring Ti and indoor physiologically equivalent temperature (PETi). The outcomes are hourly indoor Ti and PET i forecasts. Different ANN-based forecast products using different predictors were concurrently tested at 121 workplaces in agricultural, industrial, storage, and office buildings using data for an entire annual cycle. A forecast was considered skillful when the Ti and PETi forecast was <2 K from actual measurements. The best-performing model used the predictors time of year, week, and day; solar position; and outdoor weather forecast variables to train and run an ANN to predict Ti or PETi. It had an annual average mean absolute forecast error of 0.87 K for Ti and 0.99 K for PET i over the next 24 h, with Pearson correlation coefficients of 0.98 and 0.97, respectively. Overall, 91% of Ti forecasts and 88% of PET i forecasts were skillful. Indoor forecasts showed larger errors in the summer than in the winter. We conclude that combining indoor data with weather forecasts using ANNs could be implemented widely to provide locationspecific indoor weather forecasts to improve and localize heat and health warning systems.
Publication
Building and Environment
Volume
234
Pages
110077
Date
2023
Accessed
12/02/2024, 22:03
Library Catalogue
Google Scholar
Call Number
openalex:W4319868632
Extra
Publisher: Elsevier openalex: W4319868632
Citation
Sulzer, M., Christen, A., & Matzarakis, A. (2023). Predicting indoor air temperature and thermal comfort in occupational settings using weather forecasts, indoor sensors, and artificial neural networks. Building and Environment, 234, 110077. https://doi.org/10.1016/j.buildenv.2023.110077