Understanding the complex dynamics of climate change in south-west Australia using Machine Learning
Resource type
Preprint
Authors/contributors
- Yadav, Alka (Author)
- Das, Sourish (Author)
- Bakar, K Shuvo (Author)
- Chakraborti, Anirban (Author)
Title
Understanding the complex dynamics of climate change in south-west Australia using Machine Learning
Abstract
The Standardized Precipitation Index (SPI) is used to indicate the meteorological drought situation - a negative (or positive) value of SPI would imply a dry (or wet) condition in a region over a period. The climate system is an excellent example of a complex system since there is an interplay and inter-relation of several climate variables. It is not always easy to identify the factors that may influence the SPI, or their inter-relations (including feedback loops). Here, we aim to study the complex dynamics that SPI has with the SST, NINO 3.4 and Indian Ocean Dipole (IOD), using a machine learning approach. Our findings are: (i) IOD was negatively correlated to SPI till 2008; (ii) until 2004, SST was negatively correlated with SPI; (iii) from 2005 to 2014, the SST had swung between negative and positive correlations; (iv) since 2014, we observed that the regression coefficient ($\delta$) corresponding to SST has always been positive; (v) the SST has an upward trend, and the positive upward trend of $\delta$ implied that SPI has been positively correlated with SST in recent years; and finally, (vi) the current value of SPI has a significant positive correlation with a past SPI value with a periodicity of about 7.5 years. Examining the complex dynamics, we used a statistical machine learning approach to construct an inferential network of these climate variables, which revealed that SST and NINO 3.4 directly couples with SPI, whereas IOD indirectly couples with SPI through SST and NINO 3.4. The system also indicated that Nino 3.4 has a significant negative effect on SPI. Interestingly, there seems to be a structural change in the complex dynamics of the four climate variables, some time in 2008. Though a simple 12-month moving average of SPI has a negative trend towards drought, the complex dynamics of SPI with other climate variables indicate a wet season for western Australia.
Date
2023-02-22
Call Number
openalex: W4321650125
Extra
openalex: W4321650125
Citation
Yadav, A., Das, S., Bakar, K. S., & Chakraborti, A. (2023). Understanding the complex dynamics of climate change in south-west Australia using Machine Learning. https://doi.org/10.48550/arxiv.2302.11465
Theme
Link to this record